ACOUSTIC PULSE SPREADING IN A RANDOM FRACTAL
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Abstract. Fractal medium models are used to model for instance the heterogeneous earth and
the turbulent atmosphere. A wave pulse propagating through such a medium will be affected by
multiscale medium fluctuations. For a class of one-dimensional fractal random media defined in
terms of fractional Brownian motion we show how the wave interacts with the medium fluctuations.
The modification in the pulse shape depends on the roughness of the medium and can be described
in a deterministic way when the pulse is observed at its random arrival time. For very rough media
the coherent wave is confined to a surface layer.

Key words. wave propagation, random medium, fractional Brownian motion, homogenization,
anomalous diffusion

AMS subject classifications. 34F05, 34E10, 37H10, 60H20

1. Introduction. Propagation of wave pulses in a smooth medium is well under-
stood but propagation in a rough or multiscale medium is not so well understood. We
will look at how a propagating pulse interacts with rough variations in the medium.

Given the importance and long history of wave propagation and scattering prob-
lems, a multitude of approaches have been developed to analyze them. In the homog-
enization or effective media regime, rapidly varying properties of the medium average
out when the width of the propagating pulse is large compared to the scale of the
medium fluctuations. However, over long propagation distances the accumulated ef-
fect of the scattering, associated with the medium microstructure, gradually changes
the pulse beyond the geometrical effects of the high frequency analysis in the smooth
homogenized medium. In the 1960’s and early 1970’s mean pulse propagation over
long distances was analyzed. More recently a mathematical theory has been devel-
oped that gives a more precise description [1, 8, 16] of pulse propagation. It deals with
pulses in a particular realization of the random medium and explains why in many
cases the evolution of the pulse shape is to leading order deterministic. We refer to
this phenomenon as pulse stabilization. So far, two salient features of this “pulse shap-
ing” theory have been that it assumes a one dimensional medium and a separation of
scales for the medium heterogeneities, that is, the medium has features on microscales
which are well separated from the macroscale. However, several studies [9, 13, 14, 21]
suggest that for instance the earth’s crust should be modeled as containing fluctua-
tions on a continuum of length scales. Multiscale medium models are also used for the
turbulent atmosphere [20], moreover, to model the transition zone between different
parts of tissues or the zone between different parts of certain devices, for instance the
zone associated with a large change in the dielectric permittivity. Burridge et al. give
a nice derivation of pulse shaping in periodic and stationary random media in [6].
Here, we generalize the pulse shaping theory for a two scale medium, as presented in
[6], to the multiscale case.

The stabilization phenomenon has been shown to hold true also for waves propa-
gating in three spatial dimensions in the case with layered media. This problem has
been analyzed in detail in [7] and more recently also in [12] were it is discussed in the
context of time-reversal of waves. Stabilization and pulse shaping in the case with
slow lateral variations in the medium has been analyzed in [15] and [25].
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The analysis of the interaction of a wave pulse with a medium varying on many
length scales is an interesting but largely open question from a mathematical view-
point; despite its importance in applications. We analyze this problem for acoustic
waves propagating in a one dimensional discrete medium, modeled in terms of frac-
tional Brownian motion. Fractional Brownian motion is a Gaussian (self-similar)
stochastic processes and is often used as a model for processes containing fluctuations
on a continuum of length scales, for instance for modeling of turbulent environments.
The discretization assumes that the medium has a smallest scale. In turbulence theory
this is the inner scale. Below we refer to media defined in terms of fractional Brow-
nian motion as ‘fractal’ media. The Hurst exponent H characterizes the roughness
of the fractional Brownian motion and the value H = 1/2 gives standard Brownian
motion. In the simplest case with H = 1/2 the medium model that we consider satis-
fies a separation of scales assumption. For H # 1/2 the medium contains long range
interactions and variations on many scales. We show that in the limit of small inner
scale relative to the travel distance the transformation of the pulse shape becomes
deterministic, thus the classic pulse shaping theory for media satisfying a separation
of scales assumption generalizes in this sense. However, now the scale on which the
spreading of the pulse happens depends on the roughness of the medium and does
not in general correspond to the inner scale as in the classic theory. In fact, a pulse
supported on the inner scale is trapped in a surface layer if the medium is rougher
than the standard model. If the medium is smoother than the standard model, i.e.
H > 1/2, the shape of such a pulse is not affected by the random medium fluctuations.

Most previous work on wave interaction with a fractal object deals with scattering
caused by fractal interfaces. However, some authors have explored wave-interaction
with deterministic fractal media using numerical simulations [4, 17, 26]. Reflections
from a random fractal and how they depend on the fractal exponent is explored by
numerical experiments in [4]. In [17] Konotop et al. examine the wave reflections from
a fractal devil’s staircase and introduce a heuristic scheme for computing effective
parameters of such a medium. Sun et al. [26] explore numerically wave propagation
in a similar medium and observe strong resonance effects. Here, we analyze acoustic
pulse transmission through a random fractal and illustrate our theoretical results with
numerical simulations.

In Section 2 we state the governing equations for the acoustic pulse and in Section
3 the models for the fractal media that we consider. We summarize how the pulse
shaping theory generalizes to these media in Section 4. In Section 5 we derive the
general averaging result that can be used for fractal media. Finally, in Section 6, we
apply this averaging result to the fractal media that we consider and also illustrate
our theoretical results with numerical simulations.

2. Governing equations. We follow the notation set forth in [3] and [6]. The
governing equations for the continuum are the Euler equations giving conservation of
momentum and mass

(1) put+pz=0
K_lpt+uz =0

with ¢ being time and z measuring depth into the medium. The dependent variables
are the pressure p and the (z-component) of the particle velocity u. The medium
parameters are the density p and the bulk-modulus K, which is the reciprocal of the
compressibility. We next make a change of variables from depth z to the first arrival
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time from the surface to this depth:

21
2 r=x(z) = —— ds
@) @ = [ g
with the local speed of sound being ¢ = /K/p. The first arrival time gives the travel
time for the first arriving disturbances. An important aspect of the propagating pulse
is the travel time of its coherent part and this differs in general from the first arrival
time. In travel time coordinates (1) transforms into

(3) Cui +p, =0

The characteristic impedance ( is

(4) (=¢(z) = Vpz(2)) K(z(x)) = p(z(z)) c(2(2))

where z(z) is the inverse of the map defined in (2).

We model ¢ as being piecewise constant, thus, within each medium section the
wave propagation can be described as a pure translation of ‘up’- and ‘down’-propagating
wave components. We decompose the wavefield in terms of up- and down-propagating
wave components as

(5) u=§EW—U)
p=VC¢(D+U).

The positive = direction defines the downward direction and D is the wave propagating
in this direction. Our objective is to describe a down-propagating pressure pulse
somewhere deep into the medium and examine how the multiscale random fluctuations
in ¢ affects this pulse. In Section 3 we give the particular models that we consider
for the medium fluctuations and in Section 4 discuss their impact on the transmitted
pulse.

3. Modeling of the medium. The discrete medium is defined by a uniform
discretization in the travel time coordinate x as

1 fi <h
C={ or x

(6) ¢ for (k=1)h<z<kh

with k € {1,2,---}. Therefore, the time it takes a pulse to traverse a medium section
is constant and equal to h. Such a medium is sometimes referred to as a Goupillaud
medium, it has been discussed in for instance [6], [22] and [24]. Here, we consider
finely layered media and h is the small parameter in our modeling. In the next section
we describe our choices for the impedance sequence C,’j, the sequence that defines the
medium.

3.1. A standard onescale medium model. We first consider a medium model
where the fluctuations form a stationary process with the impedances in the different
medium sections being independent and identically distributed. Such a medium model
is used in [5, 6, 16]. Let the discrete impedance sequence be given by

(7) r=1+2,
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with Z ,g a sequence of independent mean zero Gaussian random variables with vari-
ance O(h). The medium fluctuations are therefore relatively weak. Note that in
practice we truncate the fluctuations in the above model such that the impedance is
positive and bounded. If 8 denotes standard Brownian motion, then a version of (7)
can be constructed as

(®) Gk =1+ B(kh) = B((k = 1)h).

This formulation serves to motivate the medium model we introduce next; a model
that incorporates fluctuations on many scales.

3.2. Multiscale medium from Fractional Brownian noise. We aim to for-
mulate a simple medium model that incorporates long range interactions or correla-
tions, that is, a model that is not limited to one intrinsic scale as the one in (8). A stan-
dard stochastic model process that incorporates long range interactions and variations
on a continuum of lengh scales is fractional Brownian motion (fBm), {8u(z);z > 0}.
This process was introduced by Mandelbrot and Van-Ness in [18]. We define the
medium model in terms of this process.

First, consider the following generalization of (8)

9) Gk =1+ Bu(kh) = Bu((k — 1)h)

with 8y being fBm with Hurst exponent H. Thus, the fluctuations in the impedance
is a fBm noise sequence. Note that 3/, is standard Brownian motion and then the
models (8) and (9) coincide. In general, fBm is a Gaussian process with mean zero,
stationary increments and with covariance and structure functions

(10) BB (@)Baw)] = % (a2 + 2 ~ 2~ )
1) BlBa() - als - An)?) = o*|AcPH

where 0 < H < 1, o a scaling parameter and Sg(0) = 0. The Hurst exponent H
determines the correlation of the increments. The covariance of a future increment
with the past increment is

E[(Bu(z) - fr(z — A2))(Bu(z + Az) - fu(z))] = o (27~ = 1)|AH

and is independent of the location index . When H > 1/2 this quantity is positive so
if the past increment is positive, then on average the future increment will be positive.
Feder [10] calls this persistence. When H < 1/2 we have an antipersistent process with
a positive increment in the past making a positive increment in the future less likely.
The paths of fBm in the persistent case will be associated with larger excursions, but
will be ‘smoother’ than the paths in the antipersistent case. The quadratic variation
of the process in the persistent case is almost surely zero whereas it is almost surely
infinite in the antipersistent case [23]. Below we show how this entails that wave
propagation through a medium defined in terms of antipersistent fBm is qualitatively
very different from wave propagation in the persistent case.

In the model (8) the impedance is piecewise constant and (! are uncorrelated
with ¢f, . unless m = 0. We refer to this model as a one scale model whose scale of
variation corresponds to the discretization scale.

In this section we consider a model for the impedance that has long range corre-
lations, the covariane is now:

o?h?HH(2H - 1)
m2(—H)

Ce(m;h, H,0) == Covl(y!, Gy m] ~ asm — oo,
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and the medium therefore exhibits correlations also over long scales. Note that if we
observe the medium on a coarser scale then we see the same decay of correlations, for
a>0:

C¢(am; h,H, o) Na_Q(I_H)CC(m;h,H,U) asm — 0o.

Since the medium has similar and nontrivial correlation structure over many scales
we refer to it as a multiscale model.

In fact, fBm itself is self-similar since S (x) and a’ B (x/a) have the same finite
dimensional distributions for all @ > 0. This property illustrates how this process
incorporates variations on all scales.

3.3. A fractal medium model. The model (9) is defined in terms of fractional
Gaussian noise and the medium fluctuations are therefore stationary. Next, we define a
medium model where the fluctuations are defined by the fractional Brownian motion
process itself. In this case the fluctuations are nonstationary, moreover, they are
strong O(1) and not weak as in the above two models. We consider the medium
model

(12) Gk = exp(Bm (kh)).

The value H = 1/3 is of particular interest since the fBm process then corresponds to
Kolmogorov turbulence, a standard medium model in the context of wave propagation
in the turbulent atmosphere. We will see below that the same theorem, Theorem
5.1, that characterizes the transformation of the pulse shape for the models in the
previous two subsections with weak or small medium fluctuations applies in this case
with relatively strong medium fluctuations. Below, in (16), we introduce the interface
reflection coefficients associated with the sequence (!'. The theorem characterizes
how the decay of the correlations in these interface reflection coefficients determines
how the medium affects the shape of the propagating wave pulse. The important
parameters that determines this decay is the Hurst exponent H, and the pulse shaping
thus depends sensitively on the value of this. We give the decay of correlations for
the interface reflection coefficients in (41). Note that even though the fluctuations of
the impedance in (12) are large, the magnitude of the fluctuations of the interface
reflection coefficients are actually small.

Observe finally that the analysis we present below holds for more general media
models than those discussed above.

4. Summary of results. In this section we characterize the wave pulse that has
propagated through the multiscale medium. We assume the model (9) and in addition
that the density p in (4) is constant. This allows us to characterize the travel time
to a given depth. The general case is considered in (5.1). We give a more detailed
account for the results and how they are derived in Sections 5 and 6.

The pulse impinging on the halfspace z > 0 has shape pg, a compactly supported
function. In the random medium the transmitted pulse at depth L can be character-
ized in terms of (i) xx(L) a random travel time correction. (ii) G a deterministic pulse
shaping function. The support of G is O(V/L). Let 7(L) be the travel time to depth
z = L in the deterministic (homogenized) medium, then we have the following result
for the transmitted pulse

LEMMA 4.1. Let 1/4 < H < 1/2 and p(0,t) = po(t/hH+1/2) be the impinging
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pulse at the surface. Then for everye >0 and M > 0,

(13)  P(sup |p(L,7(L) + xn(L) + BH1/%5) /PO(S —u)G(u; L) du| > ¢)
|s|l<M

— 0 as h—0.

The random variable xy is a Gaussian random variable with magnitude O(h). Thus,
when we observe the transmitted pulse in a randomly corrected time frame we see a
deterministic pulse in the small A limit. This is what we refer to as stabilization. If
H = 1/2, then By is standard Brownian motion that has independent increments,
corresponding to independent medium fluctuations. In this case the spreading of the
pulse happens on the diffusion scale h which is a measure of the correlation length
of the medium fluctuations, Spreading on this scale corresponds to the one discussed
by O’Doherty and Anstey in [19]. If H < 1/2, the increments of Sy are negatively
correlated and the medium fluctuations are rougher than in the standard Brownian
case. In this case the pulse shaping is stronger and happens on the anomalous diffusion
scale hH+1/2,

Consider next the case that H > 1/2, now the increments of Sy are positively
correlated and the medium fluctuations are smoother than in the standard Brownian
case. The next result shows that in this case there is no change in pulse shape on the
discretization scale in the small A limit.

LEMMA 4.2. Let H > 1/2 and p(0,t) = po(t/h) be the impinging pulse at the
surface. Then for every e >0 and M > 0,

(14) P( sup [p(L,7(L) + xn(L) + hs) —po(s)| > ¢)
|s|<M

— 0 as h—0.

The travel time correction xj is characterized as in Lemma, 4.1.

Assume that the source pulse is supported on the inner scale: pg = po(t/h). In the
Brownian case with H = 1/2 it follows from Lemma 4.1 that on the standard diffusion
scale h we observe stabilization to a fized pulse shape at the fized depth L. If H < 1/2
with a stronger pulse shaping this result generalizes in that we see stabilization on the
scale h to a fixed pulse, but for a travel distance that decreases with h. Analogously,
for H > 1/2, with a weaker pulse shaping, we observe stabilization on the scale h for
a travel distance that increases with decreasing h. This follows from

LEMMA 4.3. Let 1/4 < H < 3/4 and p(0,t) = po(t/h) be the impinging pulse at
the surface. Then for everye >0 and M > 0,

(15) P( sup |p(Lh*~2H +(Lh'=2H) + x4 (L) + hs) — /po(s —u)G(u; L) du| > ¢)

|s|<M
— 0ash—0.

Thus, the coherent pulse front will be confined to an O(Lh'~2H) neighborhood of the

surface. The random variable x} is a Gaussian random variable, now with magnitude
O(h1+H(1—2H) )

5. Derivation of pulse shaping.

5.1. Dynamic equations for the pulse front. In order to derive the above
results we need to characterize the evolution of the pulse front and how this relates to
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the fluctuations in the impedance (. Wave propagation in the discrete medium is de-
termined by the interface reflection coefficients, r?, and the transmission coefficients,
/. These are defined by

G — G
Copr +Co

(17) T =/1= >

Let D* and U* be the wave components in (5) evaluated immediately to the right
and left of interface k at location x = kh. The interface corresponds to a jump in the
characteristic impedance ¢ and continuity of p and u gives the appropriate interface
conditions that determine the associated jumps in D and U. These jumps correspond
to some of the down-propagating energy being converted to the up-propagating mode
and visa versa. The interface conditions give [6]

D+ ] [rh —rh D~
o=l L]
We are interested in the impulse response of the medium. That is, how a down-
propagating impulse at the surface is being transformed as it propagates. The impulse
response is an analogue of the Green’s function for the medium. The transmitted pulse
when we probe the medium with a general down-propagating wave is easily found by
convolution of the source wave with this impulse response. At the initial time we

assume that the medium is at rest and that we probe it with a down-propagating
impulse:

(18)

(19) Di—g = 6(z)
Ut:() == 0

Wave reflections at the interfaces in the discrete medium lead to a set of down- and
up-propagating impulses. At the time instances ¢ = ih, with i integer, these impulses
are located at the interfaces. The down-propagating pulses are separated by integer
multiples of & in the time coordinate, ¢, and also in the travel time coordinated, x; as
are the up-propagating impulses. We find it convenient to represent these ‘impulse-
trains’ by the magnitude of the impulses indexed as D;- and U ]?', with ¢ being the time
index and corresponding to times ¢ = ¢h. The index j gives the distance from the
front in the z dimension, measured in units of h. Thus, D§ is the magnitude of the
first impulse in the down-propagating pulse-train at time ¢ = ¢h. The initial condition

(19) gives

(20) D§ = bo(j)
Uy =o0.

In Figure 1 we illustrate the propagation of the impulses by a sequence of ‘snapshots’
taken at times ¢ = 0,h and 2h. The figure makes it clear that at time instances
t = ih only every second interface are associated with non-zero impulses and that
the support of the pulse-trains increases with increasing time, giving pulse spreading.
An important aspect of the parameterization is that a finite section of the wave front
evolves autonomously and can be described independently of the tail part of the
wave. We make use of this fact for the analysis of the problem and also for numerical
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simulation of the evolution of the wave front. Consider D3 in the example given
in Figure 1. That is, the magnitude of the second down-propagating impulse, at
time 2h. It trails the leading impulse by two sections and is determined by a double
scattering event associated with the initial impulse DJ. Part of the initial impulse
is first reflected to an up-propagating mode and then aligned with D? through a
second scattering event. The change in D,; from one time step to the next can
in general be expressed ezactly in terms of double scattering events associated with
down-propagating impulses ‘ahead’ of it when these are evaluated at previous times.

We next show how by unraveling the evolution seen in Figure 1.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

F1c. 1. The figure illustrates the generation of multiple reflections in the discrete medium.

From (18) we find
Ditl ™ —rh D:
J = k k ]

2! Lo =1 ]

with kK =i+ 1 — j. Define

i—j
i h 1yt
(22) di = [[ =+ Dj
k=0
i—j—1
ui= [ = U
k=0

with 7}* = 1 for k < 0. This gives using (18) that
dj-“ = d;- - rZuj-“

uit = b, +rpds,
with k =i 4+ 1 — j. Then, upon elimination of u} it follows in view of (20) that

(23) dtt =d' - Ald’



pulse spreading in a fractal 9

with the vector d? corresponding to the front part of the wave:
di = [d67 d;+17 dzi1+27 o ']I'
The matrix A} = {a},;} is lower-triangular with

i _ .h h
(24) Apg = Ti—k+2 Ti—142

for k > [. In the next section we use (23) to obtain a characterization of the transmit-
ted pulse. Note that (23) articulates how the change in a down-propagating impulse
at a given time can be expressed exactly in terms of double scattering events associ-
ated with impulses ‘ahead’ of it when these are evaluated at previous times. Thus, the
statistics of products of reflection coefficients, corresponding to these double scattering
events, will determine the evolution of the pulse shape.

5.2. Stabilization from averaging. We state the conditions and the result
that describes the fascinating stabilization property of the down-propagating pulse
when this is observed in a travel-time frame. With stabilization we mean that the
transmitted pulse becomes essentially deterministic in the small A limit due to averag-
ing in (23). Averaging in (23) means that we can replace A? by its mean value which
is a lower triangular Toeplitz matrix with the entries on the i'th subdiagonal being
Elrkrh . .1, assuming here that the interface reflection coefficients form a stationary
sequence. The following theorem generalizes and makes this precise.

Let [-] denote rounding to integer value, and define

((ii_?(s’h) = —A(s,h) D(s,h)

D(O, h) =€

(25)

with A(s,h) being a lower triangular Toeplitz matrix whose first column is
[G(O, S/g(h)a h)/2a a(la S/g(h), h); T G(K, S/g(h), h)]l
for some function a and e; a vector with one in the first entry and zero else, moreover
(26) D(.’L‘,h) = [D([]z/h]aDgE/h]:' "7DgEIéh]]l
U(z,h) = [U(Ew/h]a U2[Z/h]’ T U2[ff(/h]]l )

with D} and Uj as defined above, then,
THEOREM 5.1. If for all e >0 and A € {0,1,2---}

[s/(g(R)R)]

. [ _
@ JmPlsw | Y rhrhia = [ (oo, ol > =0,

m=1

where 0 < g(h)h = o(1) and |a| < ¢ for some constant ¢, then for all € > 0

(28) Jim Pl sup |[D(s/g(h), ) = Dis, h)|| > €] = 0
(29) lim B[ sup [[U(s/g(k), h)]| > ] = 0.
- 0<s<L

The proof of this result is given in Appendix C. The formulation (25) follows from
replacing A% in (23) and the factor [, 7 in (22) by their corresponding averaged
values. We apply the above result to fractal media in Section 6.
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The following lemma shows that the condition (27) entails that the interface
reflection coefficients are small. Note, however, that this does not mean that the
medium fluctuations themselves are relatively small.

LEMMA 5.2. If for all € > 0 and A € {0,1,2---}

[s/(g(h)h)] s
30 lim P[ su rhrh —/ a(A,v/g(h),h) dv| > €] =0
@) fmPlsup | 30 rhrhia [ aldo/g0.h) ol >4

where 0 < g(h)h = o(1) and |a| < ¢ for some constant c, then for all € > 0

(31) lim P[ sup Iri| > €] =0.
h=0  “1<i<[L/(g(h)h)]

We prove this lemma in Appendix A.
For a given random medium model the following lemma gives a convenient way
to check that the condition (27) is satisfied. Define

[s/(g(h)h)] s
(32) Sh(s,A)= 3 it / a(A,v/g(h), h) dv,
0

m=1

then
LEMMA 5.3. With a and g defined as in (27), if there is an a > 0 and a C > 0
such that for h < hg

(33) sup  E[IS" (£, A) — S"(s,A)[] < g(h)hlt — 5|C

0<s<t<L

then the condition (27) is satisfied.

The proof of this lemma can be found in Appendix B.

Theorem 5.1 shows how the shape of the transmitted pulse is affected by the
medium fluctuations. In the next section we give an interpretation of this modification
and show that for an important class of random media models the spreading of the
pulse in the random medium can be described as a convolution with a deterministic
Gaussian pulse shape.

5.3. Pulse shape from the Central Limit Theorem. Assume first that the
interface reflection coefficient are stationary and that:

E[r} riyal = ha(A).
It then follows from Theorem 5.1 that in probability limy_,o D(L, h) = D(L) with
D(L) = exp(—LA) e; = exp(—La(0)/2)exp(La(0)Q/2) e;
where A and Q are lower triangular Toeplitz matrix whose first columns are

a =[a(0)/2, a(1), a(2),--]
q = -0, 2a(1)/a(0), 2a(2)/a(0),- -’

respectively. Note that multiplication with Q corresponds to a discrete convolution
with its first column. Therefore



pulse spreading in a fractal 11

(34) D(L) = ipnq”* as hl0
n=0

where g™ denote n-fold convolution, q° = e;, and where
pn = exp(—La(0)/2)(La(0)/2)" /n!

is a discrete Poisson distribution. For typical media models, for instance when (}!
form a Markov process, the first column of Q define a discrete probability distribution.
Then D is the distribution of a random sum. A Central Limit Theorem argument
then gives that D is approximately a Gaussian pulse shape with standard deviation
O(VL) for L large. We show this in Appendix F where we consider media with slowly
varying media statistics.

6. Application to a fractal environment. In this section we consider the
multiscale medium models introduced in Sections 3.2 and 3.3. We show how Theorem
5.1 applies to these media and give the medium statistics that define the deterministic
transformation in the shape of the propagating pulse. The results presented in Section
4 follow via a transformation from the travel time coordinate to physical depth.

6.1. Fractional Brownian noise medium. We consider the medium model
(9). A calculation involving the algebra of the moments of Gaussian random variables
gives Lemma 6.1 below.

LEMMA 6.1. Let (! be defined by (9) and 1/4 < H < 3/4 then 3 hg > 0 such
that

[s/g(h)h]
(35) lim B[ Y gl = sa(d)
m=1
[s/9(h)R]
(36) Var| Z rirh Al < g(h)hso*C(H) for h < ho
m=1

with g(h) = W27~ and for A > 1
(37) a(A) = A7 (07/8) 61 a0 ]oms
~ =AM 62 (H —1/2)(H - 1)(2H - 3) as A = .
In (37) we used the forth order discrete central difference operator 63 defined by

5.1 L@ /D= fa—e/2)

€

Thus, the coefficients a(-) can be expressed in terms of a forth order difference oper-
ator of the power law of the underlying fBm. This is related to the fact that these
coefficients are means of products of interface reflection coefficients that themselves
are obtained essentially by discrete differentiation of the impedance sequence. Lem-
mas 5.3 and 6.1 entail that the condition (27) in Theorem 5.1 is satisfied for the model
(9) with g(h) = h?#~1, Thus, in probability, the transmitted impulse response when
evaluated at depth L = Lh'—2H gsatisfies

(38) lim D(L/h,h) = exp(—LA) e;
h—0
lim |[U(L/h, h)|| =0
h—0
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where A is a lower triangular Toeplitz matrix whose first column is

[4(0)/2, a(1), a(2),--]

and U and D are defined in (26). Thus, when we probe the medium with a unit
downgoing impulse at the surface we observe the pulse shape defined by (38) at depth
L. By a transformation of the independent variable to physical depth this entails that
Lemmas 4.2 and 4.3 in Section 4 are valid when the fractal medium is defined by (9).
That Lemma 4.1 holds follows from Lemmas 5.3 and 6.1 and from Theorem 5.1 upon
a transformation of the travel time argument.

We next illustrate these results regarding the model (9) with numerical simula-
tions. In the numerical simulations we use the initial condition (19) and propagate
the pulse essentially according to (23). In practice we reformulate (23) to obtain an
orthogonal propagation operator. In the figures we plot the down-propagating pulse
D at the considered depth. Note that the origin in the plotted coordinate system
corresponds to the front of the pulse, that is D(J)V with N the total number of sections
in the discrete medium. Thus, in the absence of random medium fluctuations we
will only see a unit impulse at the origin. The random medium variations cause a
spreading of the impulse.

Simulated impulse response; H=.4 (3 res. and scaled distance)
- T T T
FEETN

0.08 T T

impulse response

-0.02 Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 14 16
normalized distance from front

Simulated impulse response; H=.6 (3 res. and scaled distance)

ti

impulse response

- I I
0 ‘ 0.1 0.2 0.3 0.4 05 0.6 0.7
normalized distance from front

F1G. 2. The figure shows the impulse response of the fractal medium plotted at a depth that
scales with the inner scale h as h'=2H . The horizontal azis is scaled by h. In this frame we see
stabilization to a fized pulse in the small h limit. This limit is approzimately o Gaussian pulse shape.
In the top plot H = .4 and in the bottom H = .6. The medium model is the one defined in (9). The
solid, dashed and dotted lines correspond to ho = 2712, hy = 2714 and ha = 2718 respectively. The
crosses give the theoretical pulse shapes.

First, we illustrate Lemma 4.3 using the medium model (9). In Figure 2 we
use 0 = 5 and the solid, dashed and dotted lines correspond to hg = 2712, h; =
27 and hy = 2719 respectively. The pulses are plotted at the scaled depth
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The crosses give the stabilized pulse shaped defined by (34). In the top plot we use
H = 0.4 whereas we use H = 0.6 in the bottom plot. As expected we see stabilization
to the theoretical pulse in both cases. Note that the horizontal axis is scaled by h. The
pulse shaping is stronger in the antipersistent case with a rougher medium (top plot).
The limiting pulse shape is close to the Gaussian pulse shape. This can be explained
by the representation (34) of the impulse response. Recall that if the vector q, the
first column of Q, is non-negative then (34) can be interpreted as the distribution of
a random sum and the impulse response will be close to the Gaussian pulse shape.
The vector q is non-negative for H > 1/2 giving in the small h limit a Gaussian pulse
as in the bottom plot. For H < 1/2 the sequence q is partly negative. In the top plot
we used a value for the Hurst exponent that is slightly smaller than the Brownian
case, H = 0.4, and the pulse shape is close to the Gaussian shape. Note that since
the pulses are plotted at depth oc h' 2F we have to go shallower and shallower in the
case H < 1/2 to see the stabilized pulse. This corresponds to an antipersistent fBm
and to rough medium variations. In the persistent case with H > 1/2 and a smoother
medium we have to go deeper and deeper into the medium to see the stabilized pulse.
Only in the pure Brownian case with H = 1/2 do we observe the pulse stabilization
at a fized depth.

Next, we illustrate Lemmas 4.1 and 4.2 using the medium model (9). In Figure
3 we plot the same impulse responses as in Figure 2, only evaluated at the fixed
depth L = 1. As expected, in the small A limit the impulse response in the case
H = 4 < 1/2 (top plot) approaches a stabilized Gaussian pulse shape. Note that
the impulse responses are plotted relative to the scale h># = h8. This is the scale
at which the pulse shape stabilizes in the small & limit. The crosses give the limiting
pulse shape and conform closely with the numerical simulations. The bottom plot
shows the transmitted impulses when H = .6 > 1/2. Then the impulse response
becomes close to a unit impulse for small h. The figure shows that the numerical
impulse responses approach, albeit slowly, the unit impulse as h is reduced.

In Figure 4 we show how the impulse response depends rather sensitively on
the value of the Hurst exponent H that gives the roughness of the medium. We use
h =271 L[ =1, 0 =1 and the model defined in (9). The solid curve corresponds to
the Kolmogorov scaling law with H = 1/3. The dotted and dashed lines correspond
respectively to a 20% increase/decrease in the Hurst exponent, giving less respectively
more spreading of the pulse.

6.2. The fractal case. Next, we let (! be defined by the medium model in
(12). Observe therefore that the medium fluctuations are strong and O(1) in contrast
to the models considered above where they were small. However, we will find that
the interaction with the medium fluctuations can be characterized in a similar way
as above. The following lemma can be shown by a generalization of the analysis that
leads to Lemma 6.1.

LEMMA 6.2. Let (! be defined by (12) and 1/4 < H < 3/4 then

[s/9(h)h]
(39) lm B[ ) Al = sa(d)
m=1
[s/g(h)h]

(40) Var| Z it Al < g(h)hsa*C(H) for h < ho
m=1
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Simulated impulse response; H=.4 (3 res. and scaled distance)
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Simulated impulse response; H=.4 (3 res. and scaled distance)
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0

F1G. 3. The figure shows the impulse response of the fractal medium plotted at a fixed depth.
The horizontal azis is scaled by h>™ . The top plot illustrates stabilization to a Gaussian pulse on
the relative scale h>H = h-'8 the bottom stabilization to the unit impulse. As above, in the top plot
H = .4 and in the bottom H = .6. The medium model is the one defined in (9). The solid, dashed
and dotted lines correspond to hg = 272, hy = 27 and ho = 2716 respectively. The crosses give
the theoretical pulse shapes corresponding to the smallest h value.

Simulated impulse response; H=1/3 (+ — 20 %; fixed depth)
0.3 T T T T T

impulse response

I I I I
0 0.2 0.4 0.6 0.8 1 1.2 14 16
normalized distance from front

F1G. 4. The figure shows the impulse response of the fractal medium plotted at a fixed depth.
It illustrates how the pulse shaping depends on the value of the Hurst ezponent H that gives the
roughness of the medium. The solid line corresponds to H = 1/3 and the dotted and dashed lines to
a 20% increase respectively decrease. The medium model is the one defined in (9).

with g(h) = 27~ and for A > 1

(41) a(A) = o? A2 67\ [4*]0=1 /8
~ A2 G2[(H - 1/2)/2 as A — .

Note that now the impedance is defined in terms of the fBm process itself rather than
fBm noise and that the a(-) coefficients thus is defied in terms of a second rather than
forth order difference operator. We show below that this has a strong effect on the
impulse response. Lemma 6.2 entails that the condition (27) in Theorem 5.1 again is
satisfied with g(h) = h2#~1. Thus, in probability, the transmitted impulse response
when evaluated at depth L = Lh'~2H satisfies (38) where A is a lower triangular
Toeplitz matrix whose first column is a' = [a(0)/2, a(1), a(2),---] with a(-) now
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defined by (41).

Figure 5 corresponds to Figure 2 only that we used the model (12) with o = 1.
The impulse response is again plotted relative to the scale h and at depth

Again we observe stabilization in this frame. The solid, dashed and dotted lines
correspond to hg = 272, hy = 27 and hy = 27'9 respectively. In the top plot
H = 4 and in the bottom plot H = .6. The transformation of the pulse shape is
weaker than above due to the smoother medium fluctuations. The crosses give the
theoretical pulse shapes and these conform closely with the numerical simulations for
small h. In this case with a fractal medium the correlations decay slower than for
the medium discussed in the previous section, as can be seen from (37) and (41).
The second moment associated with the discrete distribution q, defined as the first
column of Q in (34), is now unbounded and the Central Limit Theorem not valid
for this distribution. Thus, the pulse shape does not approach the Gaussian shape
as it did above. Due to the long range interactions in the medium fluctuations the
scattered wave energy is now spread far out and the coherent part of the pulse reduced
in amplitude, but not much in its shape.

Simulated impulse response; H=.4 (3 res. and scaled distance)
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Simulated impulse response; H=.6 (3 res. and scaled distance)
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Fi1G. 5. The Figure corresponds to Figure 2 only that medium model (12) rather than (9) is
used. The figure shows the impulse response of the fractal medium plotted at a depth that scales with
the inner scale h as h'~2H and the horizontal azis is scaled by h. In this frame we see stabilization
to a fized pulse in the small h limit. In the top plot H = .4 and and in the bottom H = .6. The
solid, dashed and dotted lines correspond to ho = 2712, hy =214 and hy = 216 respectively.
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Appendix A. Magnitude of medium fluctuations.

We prove Lemma 5.2 stated in Section 5. This lemma shows that the condition
(27) entails that in the small b limit the interface reflection coefficients are small.

First, observe that the condition (27) allows us, for any given € > 0, to choose hg
so small that for h < hg

[s/(g(h)h)] s
(42)  Plswp | S @) - / a(0,v/g(h), h) dv| > € /4] < /2.
0<s<L 0

m=1
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Now let {h’} be a sequence such that lim; e hi = 0. Denote the associated
array of interface reflection coefficients 7’ (w), 1 < i < N7 with

N7 =1[L/(g(h?)h7)].

Assume that Lemma 5.2 is false. Then there is a subsequence {h’} of the above kind,
a fixed € > 0 and a sequence of collections of disjoint sets {F7 }fijl so that

N;
P lU fg'] =) "P[F]] > €
1 =1
with
(43) |rfj (W) >€ for we ff

We next show that this leads to a contradiction. Define
[s/(g(h?)R9)] s o
feid) =860 = Y W @P = [ a0/, ) do

m=1 0
Note that f(s;7) has a jump discontinuity at

S(isg) = ig(hj)hja
that is

F(s0) = Flsp3) = ¥ @)

For 1 < i < N7 we therefore find

[s/g(h) W] s o
sup | >0 @)~ [ al0,0/(0), ) dol = sup |f(s:1)]
0<s<L m=1 0 0<s<L
£ (i d) = F gDl ()
- 2 2 9
and for w € F/ it follows
[s/g(h)R7] s - 2
@y s | X @R [ a0/ dl > 5.
0<s<L = 0 2
We can thus conclude that:
[s/g(K)n] s o N .
Plswp | Y. P - [ al0.0/gh) ) ol > 342 Y FF > e
0<s<L g 0 i=1

contradicting (42).

Appendix B. A stabilization criterion.
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In this appendix we prove Lemma 5.3 stated in Section 5. To prove Lemma 5.3
we need to show that (33) implies that for € > 0 and § > 0 there is an hy such that
for h < ho

(45) P[ sup [S"(s,A)| > € <6
0<s<L

with S” defined by (32):

[s/(g(h)h)] s
(46) Sh(s,A)= 3 rhrhia - / a(A,v/g(h), h) do.
m=1 0

Observe first that we can choose h so small that for h < h:

(47) g(h)h sup a(A,v,h) <e/2
(A,v,h)

since |a| is bounded and g(h)h = o(1). From (46) it follows that for h < h and i
integer:

P[ sup [S"(s,A)| > €] <P[  sup |S" (ig(h)h, A)| > €/2].

0<s<L 0<i<[L/(g(h)h)]
Therefore, to show (45) we need to show that for A small enough:

(48) P[  sup |S"(ig(h)h, A)| > €/2] < 6.
0<i<[L/(g(h)h)]

In the rest of this section we suppress the dependence on A.
The result (48) follows from two bounds that we will derive below from (33). For
i and j integers we have the following two bounds. First

2L _ _
(49) — sup P| sup |S"(iA + jg(h)h) — S"(iA)| > €/4] < 6/2
A 0<i<[L/A]  0<i<[A/(g(h)R)]

for
A _ o [(6/2)(e/4)*
(50) A—mln[ 510 ,L
with the quantities involved being defined as in Lemma, 5.3. Second
(51) Pl sup |S"(iR)| > ¢/4] < 6/2
0<i<[L/A]

for

A(8/2)(e/4)”
(52) <H L(L+A)C )
with

[ o if sup,(g(h)h) < v,
H(v) = { inf, | [g(h)h > v] elseS o
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From (49) and (51) we can conclude that (48) is indeed satisfied for € small if

(6/2)°(e/4)%*

h<H ez b

and A is chosen as in (50) because then

Pl sup |S"(ig(h)h)| > €/2]
0<i<IL/(g(W)h)]
[L/A] i i
< P[  sup |S"(GA + jg(h)h) — S"(iB)] > €/4]

i=0 0<i<[A/(g(h)h)]

+P[ sup  |SMA)| > /4]
0<i<[L/A]

2L - -

<= sup P[ sup |S"(iA + jg(h)h) — S"(iA)| > €/4] +6/2 < 6.
0<i<[L/A]  0<j<[A/(g(h)h)]
We now show (49). Define first the event
A(j;4) = [ [S"(iA + jg(h)h) — S" (iA)] > /4]

Observe that then

P[ sup 1S" (A + jg(h)h) — S"(iA)| > €/4]
0<5<[A/(g(h)h)]
[A/(g(R)R)] [A/(g(m)R)]
=P |J AG) < D PG
7=1 7=1

Using Chebyshev’s inequality and (33) we find

- BUS"GA + jg(h)h) — S"GA)*] _ Cilg(h)h)*

P[A(754)] < <
[4G39)] (e/9)° (/9
Therefore, we can conclude
P[  sup |S" (A + jg(h)h) — S"(iA)| > €/4]
0<5<[A/(g(h)h)]
A .. A CAg(h)h CA?
< —— sup P[A(5;4)] < = .
GO 1o oy LS s T T e

Thus, (49) is satisfied for A given as in (50).
Consider next showing (51). Note that
. L E[|S"(iA)]°] L
P[ sup Sh(iA)| > e/4] < [T + 1] sup —————= < |=+1
[ogig[L/A] | |2 e/4] A o<i<[L/A]  (€/4)" A

CLg(h)h
(e/4)>

Thus, (51) is satisfied if

(L + A)LCg(h)h

Rejaye =02
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or

A(3/2)(e/4)"

gMMS[L@+AW

]

which gives (52).

Appendix C. Stabilization.
We prove Theorem 5.1 given in Section 5. Let X» satisfy

(53) Xt = (I— A} X}
Xt =1

with A? defined in (23) and X € REIXIK] We show: for all € > 0
(54) Lim P[OilleLHX[s/(g(h)h)] —X(s)|[>¢€]=0
where

X
(55) ) s ) X(s)

X(0) = I

and A is a lower triangular Toeplitz matrix whose first column is

[a(oa s/g(h),h),a(l,s/g(h), h)a B -,a(K, S/Q(h)a h)]l

and with the function a being defined as in (25).
In order to show (54) we introduce a continuous version of X*. Let X" (s) satisfy

h
dde(S) — —.Ah(s) Xh(s)
X"0) =1
with
1
Ab(s) = — In(I— A" for (i—1)g(h)h < s < ig(h)h,
()= A - Al for - Dg(h < 5 < ig(h)

then X"(ig(h)h) = X, (note that in view of Lemma 5.2 we can truncate the

elements of A).
Next, define the residual

X"(s) = X" (s) — X(s).

Making use of an integrating factor and that

dX1(s) e
(56) — =X L(s).A(s, )
X710)=1
we find

X"(s) = —/SA (v) dv X" (s / X(s) X7 (v) /v A dv” A*(v) X*(v) dv
0 0
(57) + /0 X(s) X~1(v) A(v, h) /0 AW do XM(0) dv
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with
Al (v) = AM(v) — A(v, h).
From (31) it follows that ¥V € > 0

(58) imP[  sup  [JA}||> €] =0.
h=0 "1 <i<[L/(g(h)R)]

Moreover, from (27) it follows that Ve > 0
[o/ (o ()W) .
(59) imP[ S ARGk, D) -2 / a(0,5/g(h), h)ds > €] = 0
0

h—0 ‘
=1

with A% (k,1) being the elements of the matrix A?. Given a ¢; > 0 we find using (58)
that 3 ¢; > 0 such that V& >0 3 hg > 0 so that

s [s/(g(R)h)]
P[/ A" @)lldo > ] <PL Y [IAMI+cosup ||AF[IAY] > e1] +6
0 Pl j

for h < hg. Therefore, using (58), we find that 3 ¢; > 0 such that
(60) lim ]p[/ A" (0)]|dv > 1] = 0.
h—0 0
Note also that for some ¢z > 0
(61) / A, B)||do < e
0

since the coefficients a are bounded. In view of (55), (56) and (61) we find that
3 ¢4 > 0 such that

(62) max{ || X7 |, [[X[[} < ea
and from (60) that 3 c5 > 0 so that

(63) lim P[ sup ||X"(s)|| > ¢s] = 0.
h—0 0<s<t

We find using (58) that 3 ¢g > 0 such that VJ >0 3 hy >0 so that

P[ sup || sAh(v) — A(v, h)dv|| > €]

0<s<L Jo
[s/(g(R)R)] s
<Plswp || Y. AM+B  swp (AN - [TA@ bl > a4
0<s<L = 1<i<[L/(g(h)h)] 0

for h < hy with ||B|| < ¢6. The bound in (27) then gives

(64) lim P[ sup || [ A"(v) — A(v, h)dv|| > €] = 0.
h—0 0<s<L 0
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From (57) and the above it then follows that

lim P[ sup [|X"(s)|| >€ =0
h—0 0<s<L

and we have shown (54). Recall that

Ns+k _ nNs+k 17h
dNetk = pNetk 78

with Ny = [s/(g(h)h)] and

[s/(g(h)h)]
Hg = H TT’;.
m=1

Finally, by using Lemma E.1 that gives the magnitude of IT* and the result of Section
D that bounds the relative magnitude of the reflected mode, we obtain Theorem 5.1.

Appendix D. The reflected mode.

In (5) we decompose the wavefield in terms of up- and a down-propagating wave
components. Note that if the wave enters a homogeneous section with ((z) = ( for
x > L, then trivially the reflected wave component U vanishes for z > L and the
wave field is given in terms of the down-propagating wave component only. As we
now show the reflected wave component will be small in general.

Note first that from (21) it follows

J n
(65) USJ‘H = Z 7"?-4—1—2(]'—”) H Tih—1—2(j—k) Dy "y
n=0 k=1

0
H =1.
k=1
We parameterize the vector of wave components at the front by
.. g .
D! = [Dy?, Dy, DL

Observe that
H Tz'h—1—2(j—k) <1
k=1

Let i € {0,---,[L/(g(h)h)]}, then we find

Uy P <{ sup  |rgl} [[D3].
i+1-2j<k<i+1l

From (19) and (21) we get the uniform bound:
(66) DI <1.
Thus, in view of (31) we find that for all ¢ > 0 and j € {0,---, K}

mP[  sup U] > € =0,
h=0 1 <i<[L/(g(h)h)]



pulse spreading in a fractal 23

and that (29) is satisfied.

Appendix E. A bound on transmission.
We show how the magnitude of the solution of (23) can be bounded. Recall that

di\fs-i-k — Dst+k HI;
with N = [s/(g(h)h)]. Thus, in view of (66), we need to characterize the magnitude

of I1~.
LEMMA E.1. The condition (27) implies that for all € > 0

(67) lim P[ sup |In(IT") + / a(0,0/g(h), h) dv/2| > €] = 0,
h=0 “0<s<L 0
with
[s/(g(h)R)] [s/(g(h)R)]
(68) m= I == 11 vi-rke
m=1 =

Proof. Note first that we can write
ln /1_|,rh |2=_|T7"¢l|2(1+v7hr‘1)
m 2 )
with
(69) o < Il

if r < 1/2. Observe next

P[ sup |In(IT") + / " a(0,0/g(h), h) dv/2] > d

0<s<L
[s/(g(h)h)] s 1 [s/(g(h)h)]
<P[sup = rfnz—/ao,vgh dv| + = supvm rfn2>e.
I S RCRZORRYES TN WD

Let 6 > 0 be given, then from (27), (31) and (69) it follows that we can choose hg > 0
such that for h < hg

1 [s/(g(h)h)]
P[ sup §{SUP |vh | Z Irh 12} > €/2] < /2.
0<s<L m el

Therfore, for h < hg

P[ sup |In(TI%) +/ a(0,v/g(h), h) dv/2| > €]
0

0<s<L
| /e .
<6/2+ P sup —| S - / a(0,v/g(h), h) do| > €/2].
0<s< me—1 0

The result (67) then follows from (27). O
Appendix F. Limiting pulse shape and the Central Limit Theorem.
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Recall that in the small h limit the impulse response of the random medium is
characterized by the solution of (25). The matrix A in (25) is lower triangular and
Toeplitz and we find

T
D(T,h) = exp(—/ A(s,h) ds) e;
0
= exp(—A(T, h)) exp(N(T, h) Q(T’, h)) e

using a parameterization analogous to the one in Sectlon 5.3. Note that Q is a strictly
lower triangular Toeplitz matrix and A(T, h) fo (5,h)(1,1) ds, where A(s, h)a,1)
is the main diagonal entry of the matrlx A(s h). For some important random media
models the first column of the matrix Q, denote it q, has non-negative entries and
defines a discrete density supported on the non-negative integers. This is the case if
for instance the random medium is Markovian. We want to characterize D:

e k
(1) D=DO) = ep(-NepAQN) & = Y exp(-N) Gy o
k=0 ’

in the limit of large A = \(T, h) fo (8,h)(1,1) ds, corresponding to large travel
time depths. Note that in (70) we made use of the fact that multiplication with
Q corresponds to a discrete convolution. This formulation shows that if indeed qy
defines a discrete distribution, then we can regard D as the distribution of a random
sum supported on the non-negative integers. It follows that the pulse has constant
area as it travels. By the formulas for the moments of a random sum we find that then
the mean of D is Am()) and the variance A(v()\) +m(A)?) when m()\) and v()\) are
respectively the mean and variance associated with qy. The next theorem shows that
the normalized random sum converges in distribution to the standard Normal, hence,
the wave pulse attains the Gaussian shape as it penetrates deep into the medium.
LemMmA F.1. Let qy define a discrete distribution with mean m(\) < m and
variance 0 < v < v(A) < T and Sy be distributed as a random sum according to

oo
> pay”
k=0

with pp = exp(—A)A¥/k!. Then, in the large \ limit

Sy — )\m()\)
Av(A) +m(A)?)

(71) Xy =

converges in distribution to a standardized zero mean normal random variable.
Proof. Let

exp(im(A)t)pa(t)

be the characteristic function of qy. The characteristic function of Sy/v/X is then

exp{—X + Alexp(im(N)t/VX) éx(t/VN)]}
m(A)t v(A)t? 3 m(\)?t?

=exp{—-A+ A1+ ey X 3\ 1+ 0(1)}
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for A large. Thus, the characteristic function associated with X defined in (71) is
exp(—t/2+ o(1)),

in the A large limit. Hence, Lemma F.1 follows in view of Theorem 26.3 in [2]. O

Note also that the distribution of S / v/ can be approximated by the distribution
of a random sum of Gaussian random variables. The following lemma gives this
characterization of S}.

LEMMA F.2. Let py, qx and Sy be defined as in Lemma F.1. Let Ex denote

expectation with respect to the distribution of X) = Sy/ VA and E, denote expectation
with respect to the distribution defined by:

oo

(72) o(z) =Y pp M@= m)/on)

o
k=0 k

where n(-) is the standard normal distribution, p, = km(\)/VX, o7 = kv(\)/\ and
m(A) and v(\) are defined as in Theorem F.1. Then

(73) limysoo (B, [u] — Ex[u]) = 0

for every bounded continuous function wu.



